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Abstract. A critical discussion is given of the !&eh of (dis)adering in a simple 
system of king spim with respectively Glauber and Kawasaki types of stochastic 
processes. The question addressed ir whether the rate is governed by the same free 
energy excess (i equilibrium) as assumed in frequently used rate equations. W e  
focus for simplicity on uniform systems with long range interactions whose equilibria 
are well described by mean field theory. Such situations are realized in systems with 
effective spin interadions mediated by strain. We r i d  that the rate equation can 
be e x p ~ s s e d  in terms of a Glauber or Kawasaki potential. Their analytical forms 
are found to be quite different from each o t h s  and also diffaent from the epuilit- 
rium mean field energy. Howeve,  the predicted rate equations are not substantially 
different for most temperatures of interest. 

1. Introduction 

The prgent paper and its companion (which we will refer to as 11) examine critically 
the rate equation often used to describe the kinetics of atomic ordering and disordering 
in structural phase transitions. For the present the reader may envisage, say, AI/Si 
ordering in a silicate mineral such as feldspar as an example of what we have in mind. 
Paper I1 discusses in more detail the range of applications. 

The theory of the equilibrium thermodynamics of such a system is well estab- 
lished. However, there remain unanswered fundamental questions about the kinetics 
of (dis)ordering. Broadly speaking, the question to be addressed in the present paper 
is: what precisely is the driving force pushing the system towards equilibrium? The 
rate equation is customarily written in the form [l] 

aQlat = [ . . . If(Q) (1.1) 

where Q is the order parameter measuring the degree of order and the square bracket 
contains an operator to be discussed further in 11. The lart term f(Q) is the driving 
force which is usually taken to be 
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where G(Q) is the free energy of the system. This looks plausible because thermody- 
namic equilibrium is defined by 

t?G/aQ = 0 ( 1.3) 

which when substituted into (1.1) and (1.2) correctly gives aQ/& = 0. But is (1.2) 
valid far from equilibrium? We are interested in applying the rate equation to quench- 
ing from above the ordering temperature T, to well below T, (i.e. ordering), and to 
shock heating from below to above T, (i.e. disordering). We shall refer to them tc- 
gether as (dis)ordering; they cover a wide range of Q and T. 

Incidentally we can dispose of one red herring sometimes raised in connection with 
( 1 4 ,  namely that G normally pertains to equilibrium whereas in (1.2) we require G 
as a function of Q and T when they are out of equilibrium with one another. The 
point is that one can define consistently the free energy for a constrained system in 
which the quantities Q and T are held to some specific values, in the case of Q by 
some appropiate (real or fictitious) force. This concept is used routinely in Landau’s 
treatment of continuous phase transitions and is discussed for example in a wide variety 
of papers [2-51. 

We proceed by considering two simple specific systems (to be referred to as G and 
I( respectively) for which we can solve the kinetica analytically to a high degree of 
approximation in an Ising-type model. By writing the rate equations in the form (1.1) 
we can identify fG(Q) and f K ( Q )  for the two cases and see whether they are equal 
to (1.2). The answer turns out to be ‘No’. To make a more detailed comparison, it is 
convenient to define what we shall call ‘kinetic potentials’ G,(Q, T), GK(Q,‘T) from 

f o  = -aGG/aQ f K  = -aGK/aQ. (1.4) 

As expected G,, G, and G lead to the same equilibrium value of Q, but they can be 
quite direrent far from equilibrium. Nevertheless, at sufficiently high temperatures 
(T 2 0.8T,) the dynamical rate laws are not substantially different. We shall discuss 
the broader conclusions and applications of these results further in paper 11. 

We must now specify our systems G and K .  Both concern A/B ordering on a 
simple cubic lattice represented as usual by Ising spins si = fl at lattice sites i (see 
figure 1). Couplinks Jiisisj act between the spins and are such that the ordering is 
‘antiferromagnetic’ in each of the z ,  y, z directions, i.e. the order parameter is 

(1.5) I t m t n  Q = ((-1) simn) 

where I ,  m, n are the coordinates of the lattice site i. The Jij  are supposed long ranged, 
a condition that is realized in practice if the J i j  are indirect interactions mediated by 
coupling the spins to local strains in an elastic lattice structure. A particular choice 
of local strain coupling guarantees the particular ‘antiferromagnetic’ (e section 5) 
ordering above. As a consequence of the long range interactions, each spin more or 
less ‘feels’ all the others so that the system remains uniform during (dis)ordering i.e. 
its state at any time t is specified by just two macroscopic variables Q and T. We 
emphasize that the ordering does not [6] proceed by the inhomogeneous ‘ nucleation 
and growth’ process observed with nearest neighbour interactions [7]. Another con- 
sequence of the long range coupling is that correlations between spins are small and 
mean field theory (MFT) is a very good approximation as will be demonstrated in 
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s i.= +I 

Figure 1. A physical exnmple of AB ordering that can 
be modelled as an Ising-spin coupled to a lattice. This 
type of coupling with Tzs symmetry leads to  a fully 
antiferromagnetic phaee transition. s i = - 1 

section 5. We believe a further consequence of the long range coupling is that  the be- 
haviour of the system does not depend sensitively on the cubic symmetry and simple 
structure used here: indeed no specific assumptions about the structure are involved 
in the analysis. 

Our systems G and I< differ from one another in the assumed microscopic stochas- 
tic process representing the thermal excitation of the spins and hence originating the 
(dis)ordering process. In K we assume ‘Kawasaki dynamics’ [8], i.e. interchanging 
spins on sites i and j separated by a lattice vector I with probability l/rK. There is 
no difficulty envisaging this as an activated jump process interchanging atoms at i and 
j, and the jump I may or not be nearest neighbour. In system G we assume ‘Glauber’ 
dynamics in which the spin si is flipped in sign with probability l/rG [9]. This is not 
a physically realisable process if we take si = A1 to represent distinct atoms A and 
B, but it is realisable if si = i1 represent alternative ordering arrangements of two 
or more atoms in one unit cell at lattice point i (figure 1). In real systems with com- 
plex ordering patterns one would have a mixture of Kawasaki-like and Glauber-type 
mechanisms. AI1 these points about physical realisability are discussed more fully in 
paper 11. 

The plan of the paper is as follows. In section 2 we introduce the model and briefly 
outline its equilibrium properties. In section 3 we write down the probabilistic ‘master 
equation’ governing the Glauber and Kawasaki dynamics specialising to the case of a 
uniform system for the reasons discussed above. With the help of MFT, a very good 
approximation for our chosen system of indirect strain coupling as already mentioned, 
we derive the rate equation explicitly in terms of Q and T in section 4 and in section 
5 we give numerical evidence of how good MFT is from a comparison with a computer 
simulation. In section 6 we construct the kinetic potentials for systems G and K as 
defined by (1.4) and compare them with the free energy in MFT. 

The conclusion is that  the type of stochastic process (Glauber or Kawasaki) does 
not only affect the nature of the operator in the rate equation (l.l), it also determines 
the correct form for the driving force which is the operand in (1.1). This conclu- 
sion appears to be new. The use of the free energy in (l.l), (1.2) is quite a good 
approximation for many ranges of Q and T ,  but not all. 

2. The model and its equilibria 

Our aim is to describe atomic ordering processes in a lattice, each site of which is 
endowed with a pseudwspin s that can take two discrete values 1 and -1. The state 
s = 1 (s = -1) is viewed to represent the presence (absence) of an atom in the 
‘latticegas’ sense, or presence of an A atom (B atom) in the ‘AB-alloy’ sense. In 
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either case the simplest possible interaction Hamiltonian can he written in terms of 
an Ising model [IO]: 

ij 

Here the sum runs over all pairs i and j of lattice sites, Ji j  is an ‘exchange’ energy 
related to atomic interactions and H is a ‘field’ that accounts for chemical potentials. 
As mentioned in section 1 our main interest is in systems in which the Ji j  are very 
long ranged as can be realized in the presence of strain couplings (see section 5 below). 
In that case the equilibrium statistical mechanical properties of the system are well 
described by a Gibbs free energy (per site) calculated in MFT in the Bragg-Williams 

CBw(Q,T) = -(+ J(O)Q*+HQ)+ ;k,T[(l +&)ln(l +Q)+( l  -Q) In(1-Q) -211121. 

In the above expression 

limit [ll]: 

(2.2) 

J ( 0 )  Ji j  Q (si) 
j 

and k, is the Boltzmann constant. The first term (inside the brackets) is the enthalpy 
while the second term (divided by -2’) is the entropy. It may he mentioned that in the 
context of magnetism an identical free energy (2.2) is obtained in the Weiss molecular 
field theory [12]. It may also be pointed out that in writing (2.2) we have assumed 
uniformity, i.e. the value of the order parameter, defined as the expectation value 
of si (indicated by angular brackets), is independent of the site index i ,  As much of 
our discussion will be centred on antiferromagnetic-type atomic (dis)ordering systems, 
Q will be interpreted as the suhlattice magnetization in the simplest two-sublattice 
picture [12]. 

From now on we shall drop the field H without sacrificing any essential physics. 
It is evident then that the equilibrium value of Q is obtained from (2.2) by setting 

leading to  

which may be re-expressed as 

It is useful also to  define a ‘critical temperature’ T, which has its M F T  value: 

For our purposes Tc will be used simply as a parameter defined through micmcopic 
interactions Jij  (cf (2.3)). In addition, all theories (Brag-William, Weies, etc) which 
lead to an order parameter equation in equilbrium of the sort (2.6) will be referred to 
(somewhat loosely) as the M W .  
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3. Master equation for kinetics 

The king model as given in (2.1) does not have dynamics of its own. In order to 
describe non-equilibrium phenomena one has to therefore imagine the presence of a 
heat bath with which the king spins are presumed to be l o o 4 y  coupled. The role of 
the heat bath is to induce thermal fluctuations into the Ising system in such a way 
that from any initial non-equilibrium state the system must reach (at time t = a) 
an equilibrium governed by the Hamiltonian (2.1) and the temperature T of the heat 
bath. This picture can be realized by postulating a master equation for the probability 
P({s}) (the set {s} defines a certain spin configuration (sl, s2,. .. ,sN)) appropriate 
for a stochastic process that is stationary and Markovian [13]: 

(3.1) 
d 
dt --p({sl>q = W(IS1) P({Sl,t). 

The essential physical input goes into the question of how one models the ‘rate matrix’ 
or ‘relaxation matrix’ W .  

Two such models of iV have been extensively used in the literature under the 
names of Glauber 191 and Kawasaki [ E ] .  In the Glauber model it is imagined that the 
contact with the heat bath causes fluctuations that are a collection of single spin-flip 
processes. At a microscopic level such a process can be visualized to be described by 
an interaction Hamiltonian (between the king system and the heat bath) given by 

i 

where s;, s: are the usual spin projection operators, b:, 6; are operators describing 
heat bath excitations (e.g. phonons) and gi is a coupling constant. We do not go 
into the question of how one can derive the Glauber master equation by treating 
‘HI in a suitable perturbation theory of the density matrix of the entire system (i.e. 
the spins plus the bath) [14]; suffice it to note that the Glauber model describes 
non-conserved kinetics in that the spin-flip processes render the total magnetization 
& ( s i ) )  time-dependent. On the other hand, in the Kawasaki model the elementary 
fluctuation process is viewed to be a spin exchange between a pair of sites. Thus the 
corresponding interaction Hamiltonian may be chosen as 

where the cij are again certain bath operators and the gij are coupling parameters. In 
contrast to the Glauber model, since every ‘spin flip’ is now accompanied by a simul- 
taneous ‘spin flop’ a t  another site, the Kawasaki model describes conserved kinetics. 

Our interest here is not to analyse the complete probability distribution P({s}) 
but to focus attention onto the rate equation for the order parameter which is obtained 
by considering simply the first moment of P((s]). The exact equations available in 
the literature from the works of Suzuki and Kubo [I51 and Binder [IS] are: 

(i) Glauber 

(3.4) 
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(ii) Kawasaki 

(3.5) 

In (3.4) ro sets the basic time scale of the Glauber process which is usually assumed 
to be independent of temperature and spin configurations. Similarly, in (3.5), rK is 
the basic Kawasaki time, while l j  refers to the site which participates a9 the partner 
of the j t h  site in the spin exchange process. 

4. Rate equations in the decouplig approximation 

The exact rate equations in (3.4) and (3.5) are quite intractable; for instance, ex- 
panding the tanh function in (3.4) one easily sees how the equation of motion of 
( s j ( t ) )  is coupled to (sl(t)s1,(t)sl,,(t)) etc. The simplest decoupling approximation is 
to assume that there is no correlation between different sites, i.e. the average of the 
product of spin operators can be replaced by the product of their averages. As we are 
dealing with long range interactions we believe it is not unreasonable to make such a 
random-phaselike decoupling. We thus obtain 

(i) Glauber 

(ii) Kawasaki 

While (4.1) and (4.2) form a setting for our general discussions of order parameter 
kinetics in the Glauber and Kawasaki models (see 11) we restrict our attention here 
to the uniform case. That is, we replace Qj  by Q and Q l ,  by -Q, recalling that each 
Kawasaki jump involves a pair of sites belonging to two distinct sublattices. Hence 

(i) Glauber 

-Q(t) d = -- 1 [Q(t) - tanh (%Q(t))] 
dt TG 

(ii) Kawasaki 

(4.3) 
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where T, has been defined in (2.7). In (4.4) NK is the number of sites that can be 
reached by a Kawasaki jump from any given site. 

It is evident that the equilibrium MFT solution given in (2.6) satisfies both (4.3) 
and (4.4). That is to say, the particular decoupling we have effected on the Glauber 
and Kawasaki models is consistent with MFT in equilibrium. In contrast the dynamics 
described by the right hand sides of (4.3) and (4.4) are quite different! This point 
may he reinforced by considering in conjunction with (4.3) and (4.4), the oft-quoted 
phenomenological rate equation in which the kinetics is assumed to he driven by the 
mean field free energy of (2.2): 

d 1 8GBW(Q) -Q(t) = -- 
dt TkBT 8Q (4.5) 

where r is a phenomenological time constant. Equation (4.5) yields together with 

(iii) Phenomenological 
(2.2): 

Therefore, equations (4.3), (4.4) and (4.6) describe three distinct dynamic models of 
order parameter kinetics even though all of them have a unique equilibrium governed 
by (2.6). 

5. Numerical test of the deeoupling approximation 

As we have mentioned before, our model with long range interactions can be realized in 
systems with strain couplings [6]. As a particular example let us consider a harmonic 
cubic lattice of atoms with an Ising spin in each unit cell which couples linearly to the 
atoms. Schematically the Hamiltonian for the system can be written as 

‘H = uTAu + aTBu (5.1) 
where U is a 3N-dimensional vector depicting the atom displacements and U represents 
the N spins. A is the dynamical matrix for the system and B gives the spin-strain 
coupling. It can he shown [I71 that the Hamiltonian can be decoupled i.e. it can be 
written as two independent terms: 

‘H = ETA% + aJa. (5.2) 
Note that the spins are now completely separated from the displacements. They can 
thus be studied independently of the strain. The renormalized coupling between the 
spins is given by J. This spin-spin coupling is long ranged and it depends upon the 
specific type of spin-strain coupling. It can he ferromagnetic or antiferromagnetic. 
The long-rangedness of the coupling means that MFT gives a very good description of 
the system in (5.1). This makes it ideal for studying rate processes. 

We study the spin dynamics of this system by standard Monte Carlo techniques 171, 
both in the Glauber and Kawasaki models for a system with 16 x 16 x 16 spins. For 
our model Hamiltonian system with antiferromagnetic couplings, the numerical results 
allow us to test the validity of the decoupling approximation leading to (4.3) and (4.4). 
The comparison is shown in figure 2. It is evident that the results predicted by (4.3) 
and (4.4) are close to the exact numerical ones. 
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1 

Q 

-0.2 U 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 
Time Time 

Figure 2. Comparison of lhe (U) Glauber and ( b )  K a w d  rate 1AWS with the 
observed behaviour in our strain coupling model (with spin strain coupling ae in 
figwe 1) with Glaubcr and Kawasaki dynmics respectively. The system iri quendmd 
from T 2- Tc to 0.8 Tc. 

6. Comparison between different dynamic models and conclusions 

The results of section 5 reconfirm our faith in the decoupling approximation discussed 
in section 4. The stage is now set to make a comparative analysis of the dynamics 
described by ( 4 4 ,  (4.4) and (4.6). In carrying out this task it helps to recast (4.3) 
and (4.4) in the form of (4.5). The point is that in phenomenological rate theories 
of the sort described by (4.5), aG/aQ is viewed as a ‘driving force’ and the crucial 
ansatr is that the kinetic potential has the same form as the potential governing the 
equilibrium. Thus in MFT, the kinetic potential is taken as 

GFiY(Q,T) = f b ~ T [ ( I + Q ) l n ( l + Q ) + ( l - Q ) l n ( l - Q ) ] -  fb~TcQ’.  (6.1) 
It is by no means obvious that (6.1) is the right model for kinetics and in fact the whole 
question hinges on the nature of dynamics itself, i.e. whether it is of conserved or non- 
conserved type. Furthermore, our numerical analysis in section 5 suggests that within 
a stipulated form of dynamics, equation (4.3) or (4.4) may be a better description of 
the state of affairs than equation (4.6). Hence the question is, what are the relevant 
kinetic potentials for Glauber and Kawasaki kinetics? This question can be addressed 
in a meaningful way if we rescale all the time constants such that at least for small Q 
(i.e. the linearized domain), all three models of (4.3), (4.4) and (4.6) have the same 
dynamics. This identification easily leads to 

r, = rK/2NK = r. (6.2) 
We then find 
(i) Glauber 

GQ,(Q,T) = -k,T {: -In [ cosh (% -Q ) I - + Q 2 >  
(ii) Kawasaki 

(6.4) 



Rate equation for atomic ordering in  mean $eld theory: I 2971 

The B,, are the Bernoulli numbers. Comparative plots of Gkin(Q,T)-Gkin(Q = 0,T)  
for the three cases are shown in figure 3. 

I I s  

kin 

G 
K 

-0.02 otEs!! kin 

-0.04 
0 0.2 0.4 0.6 0.8 1 

S 

G 

K 

0.05 

0 

-0.05 
0 0.2 0.4 0.6 0.8 1 

-1.0 I- \' 

K 

G 

S 

-2.0 
0 0.2 0.4 0.6 0.8 1 

Q Q 
Figure 3. Gkin for the three different models for (n) T = 1.5Tc, (a) T = 0.952 '~~ 
(c) T = 0.87'~ and ( d )  T = 0.57'~. J.n fisures 3-5, G denotes the Ghuber case, K the 
K a w s a k i  case and S the phenomenological -e. 

0.04 0 * 0 6 m ;  0.02 ;;;-y 
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

Figure 4. Or;. for the three models rescded Y) that they have the same minimum 
point with (a) T = 0.82'~ and ( b )  T = 0 .52 '~ .  

kin 
0 K G S  

-0.15 
-0.02 

-0.04 -0.2 
K 

Q Q 

In figure 4 we show the same potentials numerically rescaled so that the total 
energy gained in a kinetic experiment (starting from Q equal to  zero) is identical 



2972 S Datlagupta et a1 

1.0 I I 

Q 

1 

Q 0.25 0 . 7 5 ~  

0 
0.2 0.4 0.6 0.8 

T h e  

1 

0.2 0.4 0.6 0.8 1 

0 
0.2 0.4 0.6 0.8 

Time 
Figure 5. A comparison of the three rate law predictions for a system shock heated 
to (a) 1.5 Tc and wenched to (b) 0.95 Tc, (c) 0.87'~ and (d) 0.5 Tc. 

for all three cases. This represents an experimental situation encountered in many 
thermodynamic measurements. 

In figure 5 we show the rate laws for four different selected temperatures for all 
three case.  We see from the comparison between these curves that there is numer- 
ical agreement to within 5% with T > O.85Te Only in the case T = 0.5Tc do we 
see significant differences, with the Kawasaki model giving the slowest and the p h e  
nomenological model the fastest kinetic processes. This is to be expected because 
of the conserved nature of the dynamics in the Kawasaki case. In order to see the 
differences between these three models experimentally, one t h u s  has  to quench to 
temperatures far below Tc. 
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