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Abstract. A critical discussion is given of the kinetics of (disjordering in a simple
system of Ising spins with respectively Glauber and Kawasaki types of stochastic
processes. The question addressed is whether the rate is governed by the same free
energy excess (in equilibrium) as assumed in frequently used rate equations. We
focus for simplicity on uniform systems with long range interactions whose equitibria
are well described by mean field theory. Such situations are realized in systems with
effective spin interactions mediated by strain. We find that the rate equation can
be expressed in terms of a Glavber or Kawasaki pctential. Their analytical forms
are found to be quite different from each other and also different from the equilib-
rium mnean field energy. However, the predicted rate equations are not substantially
different for most temperatures of interest.

1. Iniroduction

The present paper and its companion (which we will refer to as II) examine critically
the rate equation often used to describe the kinetics of atomic ordering and disordering
in structural phase transitions. For the present the reader may envisage, say, Al/Si
ordering in a silicate mineral such as feldspar as an example of what we have in mind.
Paper II discusses in more detail the range of applications.

The theory of the equilibrium thermodynamics of such a system is well estab-
lished. However, there remain unanswered fundamental questions about the kinetics
of (dis)ordering. Broadly speaking, the question to be addressed in the present paper
is: what precisely is the driving force pushing the system towards equilibrium? The
rate equation is customarily written in the form [1]

aR/et=1[...1/(Q) (1.1)

where € is the order parameter measuring the degree of order and the square bracket
contains an operator to be discussed further in II. The last term f(Q) is the driving
force which is usually taken o be

f(Q)=-0G/oQ (1.2)
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where G(Q) is the free energy of the system. This looks plausible because thermody-
namic equilibrium is defined by

8G/6Q =0 (1.3)

which when substituted into (1.1) and (1.2) correctly gives 8Q/8t = 0. But is (1.2)
valid far from equilibrium? We are interested in applying the rate equation to quench-
ing from above the ordering temperature T to well below T (i.e. ordering), and to
shock heating from below to above T (i.e. disordering). We shall refer to them to-
gether as {dis)ordering; they cover a wide range of Q and T'.

Incidentally we can dispose of one red herring sometimes raised in connection with
(1.2), namely that G normally pertains to equilibrium whereas in (1.2) we require G
as a function of @ and T when they are out of equilibrium with one another. The
point is that one can define consistently the free energy for a constrained system in
which the quantities @ and T are held to some specific values, in the case of Q by
some appropiate (real or fictitious) force. This concept is used routinely in Landau’s
treatment of continuous phase transitions and is discussed for example in a wide variety
of papers [2-5].

We proceed by considering two simple specific systems (to be referred to as G and
K respectively) for which we can solve the kinetics analytically to a high degree of
approximation in an Ising-type model. By writing the rate equations in the form (1.1)
we can identify fo(@) and fr(Q) for the two cases and see whether they are equal
to (1.2). The answer turns out to be *No’. To make a more detailed comparison, it is
convenient to define what we shall call ‘kinetic potentials’ G(Q, T), G (@, T) from

fo =—0G%[0Q  fyx =-0G"[0Q. (14)

As expected G, G and C lead to the same equilibrium value of @, but they can be
quite different far from equilibrium. Nevertheless, at sufficiently high temperatures
(T 2 0.8T;) the dynamical rate laws are not substantially different. We shall discuss
the broader conclusions and applications of these results further in paper II.

We must now specify our systems G and K. Both concern A/B ordering on a
simple cubic lattice represented as usual by Ising spins s; = +1 at lattice sites ¢ (see
figure 1). Couplings J;;s;s; act between the spins and are such that the ordering is
‘antiferromagnetic’ in each of the z, y, z directions, i.e. the order parameter is

Q= ((-1)i+m+ﬂslmn> (15)

where I, m, n are the coordinates of the lattice site 1. The J;; are supposed long ranged,
a condition that is realized in practice if the J;; are indirect interactions mediated by
coupling the spins to local strains in an elastic lattice structure. A particular choice
of local strain coupling guarantees the particular ‘antiferromagnetic’ (see section 5)
ordering above. As a consequence of the long range interactions, each spin more or
less ‘feels’ all the others so that the system remains uniform during (dis)ordering i.e.
its state at any time f is specified by just two macroscopic variables Q and T, We
emphasize that the ordering does not [6] proceed by the inhomogeneous ¢ nucleation
and growth’ process observed with nearest neighbour interactions [7). Another con-

sequence of the long range coupling is that correlations between spins are small and
mean field theory (MFT) is a very good approximation as will be demonstrated in
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Figure 1. A physical example of AB ordering that can

be modelled as an Ising-spin coupled to a lattice. This

type of coupling with T2y symmetry leads to a fully
S i~ +1 S i==-1 antiferromagnetic phase transition.

section 5. We believe a further consequence of the long range coupling is that the be-
haviour of the systermn does not depend sensitively on the cubic symmetry and simple
structure used here: indeed no specific assumptions about the structure are involved
in the analysis.

Our systems G and K differ from one another in the assumed microscopic stochas-
tic process representing the thermal excitation of the spins and hence originating the
(dis)ordering process. In K we assume ‘Kawasaki dynamics’ [8], i.e. interchanging
spins on sites i and 7 separated by a lattice vector I with probability 1/7;. There is
no difficulty envisaging this as an activated jump process interchanging atoms at ¢ and
7, and the jump ! may or not be nearest neighbour. In system G we assume ‘Glauber’
dynamics in which the spin s, is flipped in sign with probability 1/7; [9]. This is not
a physically realisable process if we take s; = =1 to represent distinct atoms A and
B, but it is realisable if 5; = +1 represent alternative ordering arrangements of two
or more atoms in one unit cell at lattice point i (figure 1). In real systems with com-
plex ordering patterns one would have a mixture of Kawasaki-like and Glauber-type
mechanisms. All these points about physical realisability are discussed more fully in
paper II.

The plan of the paper is as follows. In section 2 we introduce the model and briefly
outline its equilibrium properties. In section 3 we write down the probabilistic “master
equation’ governing the Glauber and Kawasaki dynamics specialising to the case of a2
uniform system for the reasons discussed above. With the help of MFT, a very good
approximation for our chosen system of indirect strain coupling as already mentioned,
we derive the rate equation explicitly in terms of § and T in section 4 and in section
5 we give numerical evidence of how good MFT is from a comparison with a computer
simulation. In section 6 we construct the kinetic potentials for systems G and K as
defined by (1.4) and compare them with the free energy in MFT.

The conclusion is that the type of stochastic process {Glauber or Kawasaki) does
not only affect the nature of the operator in the rate equation (1.1), it also determines
the correct form for the driving force which is the operand in (1.1). This conclu-
sion appears to be new. The use of the free energy in {1.1), (1.2) is quite a good
approximation for many ranges of  and T, but not all.

2. The model and its equilibria

Our aim is to describe atomic ordering processes in a lattice, each site of which is
endowed with a pseudo-spin s that can take two discrete values 1 and —1. The state
s = 1 (s = —1) is viewed to represent the presence (absence) of an atom in the
‘lattice-gas’ sense, or presence of an A atom (B atom) in the ‘AB-alloy’ sense. In
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either case the simplest possible interaction Hamiltonian can be written in terms of
an Ising model [10}:

H= Z—%—J,-js;sj-—ZHsi (2.1)
ij i

Here the sum runs over all pairs i and j of lattice sites, J;; is an ‘exchange’ energy
related to atomic interactions and H is a ‘field’ that accounts for chemical potentials.
As mentioned in section 1 our main interest is in systerns in which the J,; are very
long ranged as can be realized in the presence of strain couplings (see section 5 below).
In that case the equilibrium statistical mechanical properties of the system are well
described by a Gibbs free energy (per site) calculated in MFT in the Bragg-Williams
limit [11]:

GV (Q,T)=-(3J(O)Q*+ HQ) + 1k T((1+ Q) In(1 + Q)+ (1 - Q) In(1 - Q) —21n 2].
(2.2)

In the above expression

J(0)y= Z Ji Q= {s;) (2.3)

and kg is the Boltzmann constant. The first term (inside the brackets) is the enthalpy
while the second term (divided by —T) is the entropy. It may be mentioned that in the
context of magnetism an identical free energy (2.2) is obtained in the Weiss molecular
field theory {12]. It may also be pointed out that in writing (2.2) we have assumed
uniformity, i.e. the value of the order parameter, defined as the expectation value
of 5; (indicated by angular brackets), is independent of the site index i. As much of
our discussion will be centred on antiferromagnetic-type atomic (dis)ordering systems,
Q will be interpreted as the sublattice magnetization in the simplest two-sublattice
picture [12].

From now on we shall drop the field H without sacrificing any essential physics.
It is evident then that the equilibrium value of @ is obtained from (2.2) by setting

BG’)
—=) =0 (2.4)
().
leading to
kT {14 Q
= 2.
Qa=250) " (1 " Qe 235)
which may be re-expressed as
JOe
= ——==]. .
Qeq tanh ( kBT ) (2 5)
It is useful also to define a ‘critical temperature’ T; which has its MFT value:
7,229, : 2.7)
kg

For our purposes T will be used simply as a parameter defined through microscopic
interactions J;; (c¢f (2.3)). In addition, all theories (Bragg-Williams, Weiss, etc) which
lead to an order parameter equation in equilbrium of the sort (2.6) will be referred to
(somewhat loosely) as the MFT.
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3. Master equation for kinetics

The Ising model as given in (2.1) does not have dynamics of its own. In order to
describe non-equilibrium phenomena one has to therefore imagine the presence of a
heat bath with which the Ising spins are presumed to be loosely coupled. The role of
the heat bath is to induce thermal fluctuations into the Ising system in such a way
that from any initial non-equilibrium state the system must reach (at time ¢ = oo)
an equilibrium governed by the Hamiltonian (2.1) and the temperature T of the heat
bath. This picture can be realized by postulating a master equation for the probability
P({s)}) (the set {s} defines a certain spin configuration (s,, s,,...,8y)) appropriate
for a stochastic process that is stationary and Markovian [13]:

< P({s),0) = W({s}) P({s},1). (31)

The essential physical input goes into the question of how one models the ‘rate matrix’
or ‘relaxation matrix’ W.

Two such models of W have been extensively used in the literature under the
names of Glauber [9] and Kawasaki [8]. In the Glauber model it is imagined that the
contact with the heat bath causes fluctuations that are a ccllection of single spin-flip
processes. At a microscopic level such a process can be visualized to be described by
an interaction Hamiltonian (between the Ising system and the heat bath) given by

Hy = Egi (bF sy + b sT) (3.2)

where 5], s} are the usual spin projection operators, b;", b, are operators describing
heat bath excitations (e.g. phonons) and g; is a coupling constant. We do not go
into the question of how one can derive the Glauber master equation by treating
H; in a suitable perturbation theory of the density matrix of the entire system (i.e.
the spins plus the bath) [14]; suffice it to note that the Glauber model describes
non-conserved kinetics in that the spin-flip processes render the total magnetization
(3°;(s;)) time-dependent. On the other hand, in the Kawasaki model the elementary
fluctuation process is viewed to be a spin exchange between a pair of sites. Thus the
corresponding interaction Hamiltonian may be chosen as

H = zg,-j(cf-s-'s*-' +cstsy (3.3)

i

17 72 L

where the ¢;; are again certain bath operators and the g;; are coupling parameters. In
contrast to the Glauber model, since every ‘spin flip’ is now accompanied by a simul-
taneous ‘spin flop’ at another site, the Kawasaki model describes conserved kinetics.

Our interest here is not to analyse the complete probability distribution P({s})
but to focus attention onto the rate equation for the order parameter which is obtained
by considering simply the first moment of P({s}). The exact equations available in

the literature from the works of Suzuki and Kubo [15] and Binder [16} are:
(i) Glauber

a0 = —;}G; (cs,-(t)) - (tanh ﬁZ{:JﬂSr(f)» (3.4)
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(ii) Kawasaki

s == ;[«s,- O ={o )= { (=530, tamh 80, 9) )|
(3.5)

In (3.4) 7 sets the basic time scale of the Glauber process which is usually assumed
to be independent of temperature and spin configurations. Similarly, in (3.5), vy is
the basic Kawasaki time, while I, refers to the site which participates as the partner
of the jth site in the spin exchange process.

4. Rate equations in the decoupling approximation

The exact rate equations in (3.4) and (3.5) are quite intractable; for instance, ex-
panding the tanh function in (3.4) one easily sees how the equation of motion of
{s;(2)} is coupled to {s;(t}sy (t)s;» ()} etc. The simplest decoupling approximation is
to assume that there is no correlation between different sites, i.e. the average of the
product of spin operators can be replaced by the product of their averages, As we are
dealing with long range interactions we believe it is not unreasonable to make such a
random-phase-like decoupling. We thus obtain

(i) Glauber
590 =7 (00~ 53 1,00) (1)
(it) Kawasaki
FU0O =7 > @)~
- 1-q00, ) 4(X U0 ~Tn@)]. @

While {4.1) and (4.2) form a setting for our general discussions of order parameter
kinetics in the Glauber and Kawasaki models (see II) we restrict our attention here
to the uniform case. That is, we replace Q; by @ and @, by —@, recalling that each
Kawasaki jump involves a pair of sites belonging to two distinct sublattices. Hence

(i) Glauber
%Q(t) = —a% [Q(t) — tanh (%S—Q(t))] (4.3)
(1) Kawasaki

500 =25 [20() - (1+ @0y raun (Lo )| (44)
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where T has been defined in (2.7). In (4.4) N is the number of sites that can be
reached by a Kawasaki jump from any given site.

1t is evident that the equilibrium MFT solution given in (2.6) satisfies both (4.3)
and (4.4). That is to say, the particular decoupling we have effected on the Glauber
and Kawasaki models is consistent with MFT in equilibrium. In contrast the dynamics
described by the right hand sides of (4.3) and (4.4) are quite different! This point
may be reinforced by considering in conjunction with (4.3} and (4.4), the oft-quoted
phenomenological rate equation in which the kinetics is assumed to be driven by the
mean field free energy of (2.2):

1 8GB¥(Q)
kgT éQ
where 7 is a phenomenological time constant. Equation (4.5) yields together with
(2.2):

(iii) Phenomenological
20w=1[Za0-1n (1£20)]
$00=2Tew-3n (1229)]. (46)

Therefore, equations (4.3), (4.4) and (4.6) describe three distinct dynamic models of
order parameter kinetics even though all of them have a unique equilibrium governed
by (2.6).

d
aQ(t) =z (4.5}

5. Numerical test of the decoupling approximation

As we have mentioned before, our model with long range interactions can be realized in
systems with strain couplings [6]. As a particular example let us consider a harmonic
cubic Jattice of atoms with an Ising spin in each unit cell which couples linearly to the
atoms, Schematically the Hamiltonian for the system can be writien as

H=uTAu+0o"Bu (5.1}

where u is a 3N-dimensional vector depicting the atom displacements and o represents
the N spins. A is the dynamical matrix for the system and B gives the spin-strain
coupling. It can be shown [17] that the Hamiltonian can be decoupled i.e. it can be
written as two independent terms:

H =u" AT + olo. (5.2)

Note that the spins are now completely separated from the displacements. They can
thus be studied independently of the strain. The renormalized coupling between the
spins is given by J. This spin-spin coupling is long ranged and it depends upon the
specific type of spin—strain coupling. It can be ferromagnetic or antiferromagnetic.
The long-rangedness of the coupling means that MFT gives a very good description of
the system in (5.1). This makes it ideal for studying rate processes.

We study the spin dynamics of this system by standard Monte Carlo techniques {7],
both in the Glauber and Kawasaki models for a system with 16 % 16 x 16 spins. For
our model Hamiltonian system with antiferromagnetic couplings, the numerical results
allow us to test the validity of the decoupling approximation leading to {4.3) and (4.4).
The comparison is shown in figure 2. It is evident that the results predicted by (4.3)
and (4.4) are close to the exact numerical ones.
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Figure 2, Comparison of the {¢) Glauber and (b) Kawasaki rate laws with the
observed behaviour in our strain coupling model (with spin strain coupling as in
figure 1) with Glauber and Kawasaki dynamics respectively. The system is quenched
fromT » Tc to 0.8 Te.

6. Comparison between different dynamic models and conclusions

The results of section 5 reconfirm our faith in the decoupling approximation discussed
in gection 4. The stage is now set to make a comparative analysis of the dynamics
described by (4.3), {4.4) and (4.6). In carrying out this task it helps to recast (4.3)
and {4.4) in the form of (4.5). The point is that in phenomenological rate theories
of the sort described by (4.5), 6G/9Q is viewed as a ‘driving force’ and the crucial
ansatz is that the kinetic potential has the same form as the potential governing the
equilibrium. Thus in MFT, the kinetic potential is taken as

Gin (@,T) = 3k T(1 4+ Q) In(1+ Q) + (1 - @) In(1 - Q)] - 3kaTc Q. (6.1)
It is by no means obvious that (6.1) is the right model for kinetics and in fact the whole
question hinges on the nature of dynamics itself, i.e. whether it is of conserved or non-
conserved type. Furthermore, our numerical analysis in section 5 suggests that within
a stipulated form of dynamics, equation (4.3) or {4.4) may be a better description of
the state of affairs than equation (4.6). Hence the question is, what are the relevant
kinetic potentials for Glauber and Kawasaki kinetics? This question can be addressed
in a meaningful way if we rescale all the time constants such that at least for small Q

(i.e. the linearized domain}), all three models of (4.3), (4.4) and (4.6) have the same
dynamics. This identification easily leads to

¢ =Tg[2Ng =T (6.2)
We then find
(i) Glauber
G (Q,T) = _kBT{i In [cosh(ZC-Q)] - lqz} (6.3)
10} TC T 2

(ii) Kawasaki
T 2T, 1
@1 = (g o (F0)] - 30

b T S HE* ~1)By, (2TCQ)”°+2
0o Z¢ (Zk+2)2k) \ T

(6.4)
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The B,, are the Bernoulli numbers. Comparative plots of Gy, (@, T) =G\ (@ = 0,T)
for the three cases are shown in figure 3.

0.4
Gin
0.2 -
0.1
0
0.02
Gin
0.0
-0.02
_0-04 f 1 1 1 —2_0 1 1 1 !
0 0.2 0.4 0.6 0.8 1 0 0.2 0. 0.6 08 1
Q Q
Figure 3. Gy for the three different models for (s) T = 1.5T¢, () T = 0.95T¢,
(¢} T = 0.8T¢ and (d} T = 0.5T¢. In figures 3-5, G denotes the Glauber case, K the
Kawasaki case and S the phenomenological case.
0.06 r r . . 0.0
]
0.04 | () —0.5]
0.02 :
G kin —04 |-
0
G
—0.02 | ~-0.15
K
~-0.04 ! . L . -0.2 : , : .
02 04 06 08 1. 0 02 04 05 08 1
Q Q

Figure 4. Gy;, for the three models rescaled so that they have the same minimum
peint with (e) T = 0.8T¢ and (b) T = 0.5T¢.

In figure 4 we show the same potentials numerically rescaled so that the total
energy gained in a kinetic experiment (starting from @ equal to zero) is identical
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Time Time

Figure 5. A comparison of the three rate law predictions for a system shock heated
to (&) 1.5 Tc and quenched to (b) 0.95 T¢, (c) 0.8 Tc and (d) 0.5 T¢.

for all three cases. This represents an experimental sitvation encountered in many
thermodynamic measurements.

In figure 5 we show the rate laws for four different selected temperatures for all
three cases. We see from the comparison between these curves that there is numer-
ical agreement to within 5% with T > 0.85T;. Only in the case T = 0.5T; do we
see significant differences, with the Kawasaki model giving the slowest and the phe-
nomenological model the fastest kinetic processes. This is to be expected because
of the conserved nature of the dynamics in the Kawasaki case. In order to see the
differences between these three models experimentally, one thus has to quench to
temperatures far below T
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